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Abstract 

Assigning students exercises of adequate difficulty is important for the effective learning of 

computer programming. The difficulty of programming exercises, though, is not obvious from 

their description. In this paper, we propose a visual depiction of the difficulty of programming 

exercises based on the number of attempts each student made to solve it. The proposed 

visualization is easy to be generated automatically, but also succinct, capable of indicating 

differences of difficulty of one exercise experienced among various students, and easy to 

interpret. We illustrate the qualities of the proposed visual depiction using the examples of 

six programming exercises of varying difficulty, obtained from a submission repository of a 
real-world programming learning environment. 
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1. INTRODUCTION 

Learning programming requires constant 

practice consisting in solving programming 

exercises (Simões & Queirós, 2020). 

According to an international survey by 

Lahtinen at al. (2005), both teachers and 

students perceive that programming is 

learned better by self-practice than in 
classroom lectures.  

The programming exercise provided to 

students should be of adequate difficulty 

level (i.e., neither too easy nor too difficult) 

in order to keep students motivated (i.e., 

neither bored nor frustrated) (Schoeffel et 

al., 2018). As there are vast differences in 

the difficulty of programming exercises 

(Szydłowska et al., 2022), selecting and 

arranging exercises to meet this 

requirement is not an easy task, especially 

as it may happen that exercises considered 

easy-to-solve by a teacher are later found to 

be tough-to-pass by students. Obviously, 

feedback on the difficulty of exercises is 

needed by a teacher to adjust the selection 

and order of exercises provided to students. 

Programming learning environments usually 

provide such feedback in a limited, textual 

form, comprising only basic data, such as 

the number of correct answers, the ratio of 

correct answers, or the number of hint 

requests (see, e.g., Feng & Heffernan, 

2005). In this paper, we argue, that 

information on the difficulty of exercises can 

be more effectively conveyed in the visual 

form, which not only allows more detailed 

data to be presented without sacrificing 

succinctness, but is also simple to generate 
automatically and easy to interpret. 

Our proposal is described in section 3, 

whereas in section 4, we provide real-world  

examples of programming exercise difficulty 
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visualization to illustrate its qualities. Before 

that, in the following section, we discuss 

selected prior work on programming 
exercise difficulty. 

2. RELATED WORK 

Although our search for "programming 

exercise difficulty visualization" yielded no 

results on Google Scholar, suggesting the 

approach proposed here is novel, the 

problem of programming exercise difficulty 

has been addressed by prior research, 

focusing, however, on aspects other than 
visualization. 

Effenberger et al. (2019) dedicate their work 

to the problems of measuring difficulty and 

complexity of introductory programming 

problems. They investigated two measures: 

lines of code and the number of concepts, 

and empirically found out that neither is an 

accurate predictor of difficulty of a 
programming exercise. 

Nguyen et al. (2021) investigated the same 

problem on the example of an introductory 

data science course and a set of four 

metrics: Halstead Volume, Cyclomatic 

Complexity, number of library calls and 

number of common library calls. They 

reported that these metrics could identify 

cases where students submitted overly 

complicated codes and therefore would 

benefit from providing a scaffolding. 

Moreover, they especially pointed to the 

number of library calls, as a significant 
predictor of the change in submission score. 

Tirronen and Tirronen (2020) applied the 

Performance Factors Analysis model to a 

pass/fail data coming from an introductory 

programming course. Although they found 

out that their approach did not provide 

credible information on student outcomes on 

the course, it fared well in estimating the 
exercise difficulty.  

Kalemba and Ade-Ibijola (2019) propose a 

tool called NOPCE (The NOvice Program 

Complexity Estimator) that measures the 

complexity of programming problems based 

on the constructs their C# solutions contain, 

employing a look-up table containing 

predefined weights for programming 

constructs. They report that humans agreed 

with NOPCE on problem ranking for most of 
the time. 

Intisar and Watanobe (2018) who 

emphasize the importance of providing 

exercises matching students’ experience and 

level, propose an expert system capable of 

categorizing the programming problems 

based on their difficulty using fuzzy rules 

derived by performing cluster analysis on 
submission log data. 

Skarbalius and Lukoševičius (2021) also 

address the problem of evaluating the 

difficulty of programming exercises yet use 

a different kind of input data for this 

purpose: text description of the problem 

with accompanying figures.  

Craig et al. (2017) investigate an interesting 

aspect of the programming exercise 

difficulty problem, that is whether problems 

stated in a context familiar to students are 

easier to solve than the same problems 

stated in an unfamiliar domain. Their results 

suggest that any advantage given by a 

familiar context is dominated by other 

factors, such as the complexity of 

terminology used in the problem description, 

its length, and the availability of examples, 

which suggests that exercise authors should 

focus on the simplicity of language and the 

development of examples, rather than 

putting the problems in contexts familiar to 

students. 

Tiam-Lee and Sumi (2018) deal with the 

more complex problem of procedurally 

generating programming exercises, and 

propose a system for this purpose, which is, 

however, capable also of adjusting the 
exercise difficulty. 

None of the works described above take the 

visual approach as the one proposed in the 

following section. 
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3. VISUAL REPRESENTATION OF 

PROGRAMMING EXERCISE 

DIFFICULTY 

In programming learning environments, the 

feedback on the difficulty of solving 

programming exercises by students is 

provided usually as one or few numbers – 

e.g., the number of correct answers, the 

ratio of correct answers, or the number of 

hint requests (see, e.g., Feng & Heffernan, 

2005). This does not give a proper picture of 

the exercise difficulty, as difficulty is 

subjective, and even one exercise may be 

experienced by various students in different 

ways. Therefore, in order to depict that, one 

needs to see not only just one aggregate 

number, but how the exercise difficulty was 

experienced by all students who attempted 

to solve it. To accomplish that, we propose 

to use a graphical summary of the number 

of each student’s attempts on solving an 
exercise in the form of a bar chart.  

One such chart is constructed for each 

exercise, and each bar in such a chart 

depicts the number of one student’s 

attempts on solving that exercise. Only the 

attempts by students who eventually solved 

the exercise are considered. Therefore, 

usually the harder the exercise, the less bars 

there will be, as fewer students managed to 
solve it. 

To increase the readability of the chart, the 

bars in it are ordered ascendingly according 

to their length, and the Y axis is scaled 

accordingly to the tallest bar in the chart – 

although a scale based on the tallest bar in 

a chart collection could alternatively be used 

if the purpose is to visually compare the 
difficulty of various exercises. 

An easier exercise will be solved with fewer 

attempts than a difficult one. By capturing 

the number of attempts of all students, the 

chart is able to indicate a difference between 

an exercise which is of medium difficulty for 

all students (a flat chart with bars of similar 

height) and one which is easy for some, yet 

difficult for others (a strongly skewed chart), 

which could not be shown with just a single 
aggregate. 

If other variables are to be taken into 

consideration, e.g., whether a student asked 

for hints before solving an exercise, a 
stacked bar chart could be used. 

4. PRACTICAL IMPLEMENTATION 

AND EVALUATION 

A proof-of-concept generator of charts of 

programming exercise difficulty has been 

implemented in Python using pandas and 
matplotlib libraries.  

The chart generation has been tested on the 

“Introduction to Python 3 programming” 

exercise set containing 94 exercises for 

which over 9000 student solution attempts 

have been recorded (Szydłowska et al., 

2022). All the data were obtained from an 

instance of the FGPE Gamified Programming 
Learning Environment (Paiva et al., 2021). 

Figures 1-6 demonstrate the ability of the 

proposed visualization method to indicate 

differences in difficulty of programming 

exercises. In Fig. 1, we can see a chart 

generated for a very easy exercise, as most 

students solved it in the very first attempt, 

and only few of them needed two or three 
attempts. 

Figure 1: Visualization of a very easy 
exercise 

 

The exercise depicted in Fig. 2 is also easy, 

yet less than the previous one: almost half 
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of students needed at least two attempts to 

solve it and one student even needed 7 

attempts. 

Figure 2: Visualization of an easy exercise 

 

The exercise depicted in Fig. 3 is of mixed 

character: it was still easy for most students, 

yet 6 students needed at least 6 attempts to 

solve it, and one student needed over 20 

attempts. 

Figure 3: Visualization of an easy exercise 
with an outlier 

 

In Fig. 4, an exercise of medium difficulty 

has been portrayed. For about one-third of 

the students one or two attempts were 

enough to have it solved, another one-third  

took less than 5 attempts, and the last one-

third of the students took 10 or more 
attempts to solve it. 

Figure 4: Visualization of a medium 
difficulty exercise  

 

The exercise shown in Fig. 5 can be 

considered difficult, as only 6 students have 

solved it; two of them made it in their first 

attempt, the others took at least 10 

attempts (the last student needed almost 50 
attempts to solve the exercise). 

Figure 5: Visualization of a difficult exercise 

 

Finally, in Fig. 6, a very difficult exercise is 

charted: there were only three students who 

solved it, and for no student it took less than 
10 attempts. 
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Figure 6: Visualization of a very difficult 
exercise 

 

The charts presented above confirm that the 

proposed method for visualization of 

programming exercise difficulty is capable of 

indicating differences among the exercises in 
an easy-to-interpret way. 

5. CONCLUSION 

In this paper, we have shown that the 

difficulty of programming exercises can be 

depicted visually, providing the teachers 

with an easy-to-interpret information on 

how difficult a given exercise was for the 

students. What is important, the generated 

charts convey detailed information with 

regard to all students (not just an average), 

what, e.g., allows to identify exercises 

which, although easy for most students, are 
very difficult for some of them.  

A proof-of-concept implementation of the 

visualization method has been implemented 

in Python and successfully tested on real-

world exercise data obtained from a 

programming learning environment. 

A possible future work is to embed the 

exercise difficulty chart generator in a 

programming learning environment and 

then perform its usability evaluation among 

the teachers using that programming 
learning environment. 
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