
Visualizing the difficulty of programming exercises

Jakub Swacha

jakub.swacha@usz.edu.pl

Institute of Management, University of Szczecin,
71-454 Szczecin, Poland

Abstract

Assigning students exercises of adequate difficulty is important for the effective learning of

computer programming. The difficulty of programming exercises, though, is not obvious from

their description. In this paper, we propose a visual depiction of the difficulty of programming

exercises based on the number of attempts each student made to solve it. The proposed

visualization is easy to be generated automatically, but also succinct, capable of indicating

differences of difficulty of one exercise experienced among various students, and easy to

interpret. We illustrate the qualities of the proposed visual depiction using the examples of

six programming exercises of varying difficulty, obtained from a submission repository of a
real-world programming learning environment.

Keywords: programming education, teaching programming, programming exercises,

exercise difficulty, difficulty visualization

1. INTRODUCTION

Learning programming requires constant

practice consisting in solving programming

exercises (Simões & Queirós, 2020).

According to an international survey by

Lahtinen at al. (2005), both teachers and

students perceive that programming is

learned better by self-practice than in
classroom lectures.

The programming exercise provided to

students should be of adequate difficulty

level (i.e., neither too easy nor too difficult)

in order to keep students motivated (i.e.,

neither bored nor frustrated) (Schoeffel et

al., 2018). As there are vast differences in

the difficulty of programming exercises

(Szydłowska et al., 2022), selecting and

arranging exercises to meet this

requirement is not an easy task, especially

as it may happen that exercises considered

easy-to-solve by a teacher are later found to

be tough-to-pass by students. Obviously,

feedback on the difficulty of exercises is

needed by a teacher to adjust the selection

and order of exercises provided to students.

Programming learning environments usually

provide such feedback in a limited, textual

form, comprising only basic data, such as

the number of correct answers, the ratio of

correct answers, or the number of hint

requests (see, e.g., Feng & Heffernan,

2005). In this paper, we argue, that

information on the difficulty of exercises can

be more effectively conveyed in the visual

form, which not only allows more detailed

data to be presented without sacrificing

succinctness, but is also simple to generate
automatically and easy to interpret.

Our proposal is described in section 3,

whereas in section 4, we provide real-world

examples of programming exercise difficulty

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 98

mailto:jakub.swacha@usz.edu.pl
mailto:jakub.swacha@usz.edu.pl

visualization to illustrate its qualities. Before

that, in the following section, we discuss

selected prior work on programming
exercise difficulty.

2. RELATED WORK

Although our search for "programming

exercise difficulty visualization" yielded no

results on Google Scholar, suggesting the

approach proposed here is novel, the

problem of programming exercise difficulty

has been addressed by prior research,

focusing, however, on aspects other than
visualization.

Effenberger et al. (2019) dedicate their work

to the problems of measuring difficulty and

complexity of introductory programming

problems. They investigated two measures:

lines of code and the number of concepts,

and empirically found out that neither is an

accurate predictor of difficulty of a
programming exercise.

Nguyen et al. (2021) investigated the same

problem on the example of an introductory

data science course and a set of four

metrics: Halstead Volume, Cyclomatic

Complexity, number of library calls and

number of common library calls. They

reported that these metrics could identify

cases where students submitted overly

complicated codes and therefore would

benefit from providing a scaffolding.

Moreover, they especially pointed to the

number of library calls, as a significant
predictor of the change in submission score.

Tirronen and Tirronen (2020) applied the

Performance Factors Analysis model to a

pass/fail data coming from an introductory

programming course. Although they found

out that their approach did not provide

credible information on student outcomes on

the course, it fared well in estimating the
exercise difficulty.

Kalemba and Ade-Ibijola (2019) propose a

tool called NOPCE (The NOvice Program

Complexity Estimator) that measures the

complexity of programming problems based

on the constructs their C# solutions contain,

employing a look-up table containing

predefined weights for programming

constructs. They report that humans agreed

with NOPCE on problem ranking for most of
the time.

Intisar and Watanobe (2018) who

emphasize the importance of providing

exercises matching students’ experience and

level, propose an expert system capable of

categorizing the programming problems

based on their difficulty using fuzzy rules

derived by performing cluster analysis on
submission log data.

Skarbalius and Lukoševičius (2021) also

address the problem of evaluating the

difficulty of programming exercises yet use

a different kind of input data for this

purpose: text description of the problem

with accompanying figures.

Craig et al. (2017) investigate an interesting

aspect of the programming exercise

difficulty problem, that is whether problems

stated in a context familiar to students are

easier to solve than the same problems

stated in an unfamiliar domain. Their results

suggest that any advantage given by a

familiar context is dominated by other

factors, such as the complexity of

terminology used in the problem description,

its length, and the availability of examples,

which suggests that exercise authors should

focus on the simplicity of language and the

development of examples, rather than

putting the problems in contexts familiar to

students.

Tiam-Lee and Sumi (2018) deal with the

more complex problem of procedurally

generating programming exercises, and

propose a system for this purpose, which is,

however, capable also of adjusting the
exercise difficulty.

None of the works described above take the

visual approach as the one proposed in the

following section.

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 99

3. VISUAL REPRESENTATION OF

PROGRAMMING EXERCISE

DIFFICULTY

In programming learning environments, the

feedback on the difficulty of solving

programming exercises by students is

provided usually as one or few numbers –

e.g., the number of correct answers, the

ratio of correct answers, or the number of

hint requests (see, e.g., Feng & Heffernan,

2005). This does not give a proper picture of

the exercise difficulty, as difficulty is

subjective, and even one exercise may be

experienced by various students in different

ways. Therefore, in order to depict that, one

needs to see not only just one aggregate

number, but how the exercise difficulty was

experienced by all students who attempted

to solve it. To accomplish that, we propose

to use a graphical summary of the number

of each student’s attempts on solving an
exercise in the form of a bar chart.

One such chart is constructed for each

exercise, and each bar in such a chart

depicts the number of one student’s

attempts on solving that exercise. Only the

attempts by students who eventually solved

the exercise are considered. Therefore,

usually the harder the exercise, the less bars

there will be, as fewer students managed to
solve it.

To increase the readability of the chart, the

bars in it are ordered ascendingly according

to their length, and the Y axis is scaled

accordingly to the tallest bar in the chart –

although a scale based on the tallest bar in

a chart collection could alternatively be used

if the purpose is to visually compare the
difficulty of various exercises.

An easier exercise will be solved with fewer

attempts than a difficult one. By capturing

the number of attempts of all students, the

chart is able to indicate a difference between

an exercise which is of medium difficulty for

all students (a flat chart with bars of similar

height) and one which is easy for some, yet

difficult for others (a strongly skewed chart),

which could not be shown with just a single
aggregate.

If other variables are to be taken into

consideration, e.g., whether a student asked

for hints before solving an exercise, a
stacked bar chart could be used.

4. PRACTICAL IMPLEMENTATION

AND EVALUATION

A proof-of-concept generator of charts of

programming exercise difficulty has been

implemented in Python using pandas and
matplotlib libraries.

The chart generation has been tested on the

“Introduction to Python 3 programming”

exercise set containing 94 exercises for

which over 9000 student solution attempts

have been recorded (Szydłowska et al.,

2022). All the data were obtained from an

instance of the FGPE Gamified Programming
Learning Environment (Paiva et al., 2021).

Figures 1-6 demonstrate the ability of the

proposed visualization method to indicate

differences in difficulty of programming

exercises. In Fig. 1, we can see a chart

generated for a very easy exercise, as most

students solved it in the very first attempt,

and only few of them needed two or three
attempts.

Figure 1: Visualization of a very easy
exercise

The exercise depicted in Fig. 2 is also easy,

yet less than the previous one: almost half

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 100

of students needed at least two attempts to

solve it and one student even needed 7

attempts.

Figure 2: Visualization of an easy exercise

The exercise depicted in Fig. 3 is of mixed

character: it was still easy for most students,

yet 6 students needed at least 6 attempts to

solve it, and one student needed over 20

attempts.

Figure 3: Visualization of an easy exercise
with an outlier

In Fig. 4, an exercise of medium difficulty

has been portrayed. For about one-third of

the students one or two attempts were

enough to have it solved, another one-third

took less than 5 attempts, and the last one-

third of the students took 10 or more
attempts to solve it.

Figure 4: Visualization of a medium
difficulty exercise

The exercise shown in Fig. 5 can be

considered difficult, as only 6 students have

solved it; two of them made it in their first

attempt, the others took at least 10

attempts (the last student needed almost 50
attempts to solve the exercise).

Figure 5: Visualization of a difficult exercise

Finally, in Fig. 6, a very difficult exercise is

charted: there were only three students who

solved it, and for no student it took less than
10 attempts.

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 101

Figure 6: Visualization of a very difficult
exercise

The charts presented above confirm that the

proposed method for visualization of

programming exercise difficulty is capable of

indicating differences among the exercises in
an easy-to-interpret way.

5. CONCLUSION

In this paper, we have shown that the

difficulty of programming exercises can be

depicted visually, providing the teachers

with an easy-to-interpret information on

how difficult a given exercise was for the

students. What is important, the generated

charts convey detailed information with

regard to all students (not just an average),

what, e.g., allows to identify exercises

which, although easy for most students, are
very difficult for some of them.

A proof-of-concept implementation of the

visualization method has been implemented

in Python and successfully tested on real-

world exercise data obtained from a

programming learning environment.

A possible future work is to embed the

exercise difficulty chart generator in a

programming learning environment and

then perform its usability evaluation among

the teachers using that programming
learning environment.

6. REFERENCES

Craig, M., Smith, J., & Petersen, A. (2017).

Familiar Contexts and the Difficulty of

Programming Problems. In Proceedings of

the 17th Koli Calling International

Conference on Computing Education

Research, 123–127.
https://doi.org/10.1145/3141880.3141898.

Effenberger, T., Čechák, J., & Pelánek, R.

(2019). Difficulty and Complexity of

Introductory Programming Problems. In

Educational Data Mining in Computer

Science Education Workshop.

https://www.fi.muni.cz/~xpelanek/publicati

ons/difficulty-complexity-programming.pdf.

Feng, M., & Heffernan, N. T. (2005).

Informing Teachers Live about Student

Learning: Reporting in Assistment System.

In Workshop on Usage Analysis in Learning

Systems, Proceedings of Artificial

Intelligence in Education. http://lium-

dpuls.iut-laval.univ-lemans.fr/aied-
ws/PDFFiles/feng.pdf.

Intisar, C. M., & Watanobe, Y. (2018).

Cluster Analysis to Estimate the Difficulty of

Programming Problems. In Proceedings of

the 3rd International Conference on

Applications in Information Technology, 23–

28.
https://doi.org/10.1145/3274856.3274862.

Kalemba, E., & Ade-Ibijola, A. (2019). A

Metric for Estimating the Difficulty of

Programming Problems by Ranking the

Constructs in their Solutions. In 2019

International Multidisciplinary Information

Technology and Engineering Conference

(IMITEC), 1–9.

https://doi.org/10.1109/IMITEC45504.2019
.9015843.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-

M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin,
37(3), 14–18.

Nguyen, H., Lim, M., Moore, S., Nyberg, E.,

Sakr, M., & Stamper, J. (2021). Exploring

Metrics for the Analysis of Code Submissions

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 102

https://doi.org/10.1145/3141880.3141898
https://doi.org/10.1145/3141880.3141898
https://www.fi.muni.cz/~xpelanek/publications/difficulty-complexity-programming.pdf
https://www.fi.muni.cz/~xpelanek/publications/difficulty-complexity-programming.pdf
https://www.fi.muni.cz/~xpelanek/publications/difficulty-complexity-programming.pdf
https://www.fi.muni.cz/~xpelanek/publications/difficulty-complexity-programming.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
http://lium-dpuls.iut-laval.univ-lemans.fr/aied-ws/PDFFiles/feng.pdf
https://doi.org/10.1145/3274856.3274862
https://doi.org/10.1145/3274856.3274862
https://doi.org/10.1109/IMITEC45504.2019.9015843
https://doi.org/10.1109/IMITEC45504.2019.9015843
https://doi.org/10.1109/IMITEC45504.2019.9015843
https://doi.org/10.1109/IMITEC45504.2019.9015843

in an Introductory Data Science Course. In

LAK21: 11th International Learning

Analytics and Knowledge Conference, 632–

638.
https://doi.org/10.1145/3448139.3448209.

Paiva, J. C., Queirós, R., Leal, J. P., Swacha,

J., & Miernik, F. (2021). An Open-Source

Gamified Programming Learning

Environment. In P. R. Henriques, F. Portela,

R. Queirós, & A. Simões (Eds.), Second

International Computer Programming

Education Conference (ICPEC 2021) (Vol.

91, p. 5:1-5:8). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik.

https://doi.org/10.4230/OASIcs.ICPEC.202
1.5.

Schoeffel, P., Wazlawick, R. S., & Ramos, V.

F. C. (2018). Motivation and Engagement

Factors of Undergraduate Students in

Computing: A systematic mapping study. In

2018 IEEE Frontiers in Education Conference

(FIE), 1–5.
https://doi.org/10.1109/FIE.2018.8658384.

Simões, A., & Queirós, R. (2020). On the

Nature of Programming Exercises. In R.

Queirós, F. Portela, M. Pinto, & A. Simões

(Eds.), First International Computer

Programming Education Conference (ICPEC

2020) (Vol. 81, p. 24:1-24:9). Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.

https://doi.org/10.4230/OASIcs.ICPEC.202

0.24.

Skarbalius, A., & Lukoševičius, M. (2021).

Automatic Programming Problem Difficulty

Evaluation – First Results. In A. Lopata, D.

Gudonienė, & R. Butkienė (Eds.),

Information and Software Technologies (pp.

150–159). Springer International Publishing.

https://doi.org/10.1007/978-3-030-88304-
1_12.

Szydłowska, J., Miernik, F., Ignasiak, M. S.,

& Swacha, J. (2022). Python Programming

Topics That Pose a Challenge for Students.

In A. Simões & J. C. Silva (Eds.), Third

International Computer Programming

Education Conference (ICPEC 2022) (Vol.

102, p. 7:1-7:9). Schloss Dagstuhl –

Leibniz-Zentrum für Informatik.

https://doi.org/10.4230/OASIcs.ICPEC.202

2.7.

Tiam-Lee, T. J., & Sumi, K. (2018).

Procedural Generation of Programming

Exercises with Guides Based on the

Student’s Emotion. In 2018 IEEE

International Conference on Systems, Man,

and Cybernetics (SMC), 1465–1470.
https://doi.org/10.1109/SMC.2018.00255.

Tirronen, V., & Tirronen, M. (2020).

Estimating Programming Exercise Difficulty

using Performance Factors Analysis. In 2020

IEEE Frontiers in Education Conference

(FIE), 1–5.

https://doi.org/10.1109/FIE44824.2020.92

74142.

2022 Proceedings of the Information Systems Education Conference
Virtual Meeting v38

www.isecon.org Page 103

https://doi.org/10.1145/3448139.3448209
https://doi.org/10.1145/3448139.3448209
https://doi.org/10.4230/OASIcs.ICPEC.2021.5
https://doi.org/10.4230/OASIcs.ICPEC.2021.5
https://doi.org/10.4230/OASIcs.ICPEC.2021.5
https://doi.org/10.4230/OASIcs.ICPEC.2021.5
https://doi.org/10.1109/FIE.2018.8658384
https://doi.org/10.1109/FIE.2018.8658384
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://doi.org/10.1007/978-3-030-88304-1_12
https://doi.org/10.1007/978-3-030-88304-1_12
https://doi.org/10.1007/978-3-030-88304-1_12
https://doi.org/10.1007/978-3-030-88304-1_12
https://doi.org/10.4230/OASIcs.ICPEC.2022.7
https://doi.org/10.4230/OASIcs.ICPEC.2022.7
https://doi.org/10.4230/OASIcs.ICPEC.2022.7
https://doi.org/10.4230/OASIcs.ICPEC.2022.7
https://doi.org/10.1109/SMC.2018.00255
https://doi.org/10.1109/SMC.2018.00255
https://doi.org/10.1109/FIE44824.2020.9274142
https://doi.org/10.1109/FIE44824.2020.9274142
https://doi.org/10.1109/FIE44824.2020.9274142
https://doi.org/10.1109/FIE44824.2020.9274142

